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Abstract: In this article we propose an implementation of the extended Kalman filter (EKF)
for the retrieval of optical and geometrical properties in two-layered turbid media assuming a
dynamic setting, where absorption of each layer was changed in different steps. Prior works
implemented the EKF in frequency-domain with several pairs of light sources and detectors
and for static parameters estimation problems. Here we explore the use of the EKF in single
distance, time-domain measurements, together with a corresponding forward model. Results
show good agreement between retrieved and nominal values, with rather narrow analytical
credibility intervals, indicating that the recovery process has low uncertainty, especially for the
absorption coefficients.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

During the past thirty years, Near Infrared Spectroscopy (NIRS) has become an increasingly
interesting field in Biomedical Optics, due to the low absorption that NIR light presents in
biological tissues [1–6]. Among these, one of the most important organs is the human brain,
where chromophores concentration in blood (such as haemoglobin) is modified by external stimuli
or internal lesions [7–9]. In this sense, brain haemodynamics can be studied by means of the
analysis of changes in light absorption when light signals are injected from the outside. Hereby
photons must propagate through a layered system consisting of scalp, skull and cerebrospinal
fluid (CSF)–among others–before reaching the cerebral cortex. It is important to translate these
absorption changes into changes in the content of chromophores in the blood. That can be done
by analyzing the distributions of time of flight (DTOFs) of photons that are affected by variations
in the optical properties in the studied system, which are the absorption coefficient (µa) and the
reduced scattering coefficient (µ′s).
Several methods have been introduced in order to solve the inverse problem of retrieving the

optical properties of layered media from a single measurement or a set of measurements [10–14].
Most of these methods are based on the Maximum Likelihood Estimator (MLE) approach. There
are, at least, two disadvantages in using such techniques: first, depending on the configuration
of the solvers, it might be necessary to keep track on the initial points, and propose ad hoc
criteria for the selection of the corresponding initial point for each measurement separately. This
approach was considered in [12], where the authors use a fixed initial distribution (characterized
by an initial mean and covariance) for every single measurement. Second, we may waste prior
information on the dynamics as well as any other information we may have collected prior to the
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measurements. For example, if after a given set of recoveries, all of them showed an increasing
behavior, we might expect the next recovery to increase as well.

In this publication we present an algorithm based on the Extended Kalman Filter for retrieving
the optical as well as the geometrical properties of two-layered media, using time-resolved,
single-distance measurements. This algorithm is a modified version of the one presented in Ref.
[15], where the recovery of optical properties and thicknesses of a four-layered turbid medium in a
multi-distance setup using a frequency-domain approach was performed, through the proposal of
a static estimation problem. The main improvements are the use of a single-distance approach, a
more straightforward deconvolution process that does not require calibration of the corresponding
hyperparameters, and the discard of the calibration process, which implies less complexity and
computation times. Other changes regarding the forward model were also implemented, which
strongly impact the efficiency of our method.
This work is structured as follows. Section 2 introduces the analytical model and the experi-

mental setup. Section 3 describes the extended Kalman Filter together with the corresponding
improvements in the methodology. Section 4 deals with the tools used to reduce the complexity
and the time computation of the forward model. Section 5 gives details on the particular
implementation on the EKF from the statistical point of view for the different studied situations.
Section 6 presents the main results, which are finally analyzed in Section 7, also concluding with
a brief summary of the whole work, together with some ideas for future improvements.

2. Problem formulation and setup

2.1. Theoretical model

The situation to be modelled is presented in Fig. 1. A laser beam impinges on the center of the
top surface of an N-layered cylinder of radius R, where layer j = 1, . . . ,N has optical properties
µa, j and µ′s, j (so that the diffusion coefficient is defined as Dj = 1/(3µ′s, j)), refractive index
nj and thickness lj, except for the last layer, which is taken as semi-infinite [16], i.e, lN = ∞.
According to the diffusion approximation, scattering becomes isotropic at a depth z0 = 1/(µ′s,1)
[1], so the actual position of the isotropic source is r = (0, 0, z0). The reflectance R (ρ, t) with
optode separation ρ at time t at the surface z = 0 can be obtained as follows:

R (ρ, t) =
1

4Aπ2R2
EB

∞∑
n=1

[∫ ∞

−∞

G1 (sn, z = 0,ω) eiωtdω
]

J0 (snρ)
J21 (snREB)

, (1)

where J0 and J1 are the Bessel functions of the first kind and orders zero and one, respectively;
A = A(n) is a factor that depends on the refractive index mismatch between the first layer
and the surrounding medium [3], REB is an extrapolated radius given by REB = R + zb,1 (with
extrapolation distance zb,1 = 2AD1); and sn is the n-th scaled order zero Bessel function root
such that J0 (snREB) = 0. The Green’s function G1 (sn, z, ω) for the first layer has the form:
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being αj =

√
µa, j
Dj
+ s2n + iω

Djcj and cj the speed of light in layer j. The factors βN and γN depend
on the optical properties and thicknesses of the remaining layers, except for the two-layered case,
where βN = γN = 1.



Research Article Vol. 11, No. 1 / 1 January 2020 / Biomedical Optics Express 253

Fig. 1. Scheme for the modelling of light diffusion in a multi-layered cylinder with the last
layer of infinite thickness.

2.2. Experimental setup

Experimental data were taken from single-distance, time-resolved reflectance measurements
conducted on a two-layered liquid phantom, as illustrated in Fig. 2. The experiments were
performed with the time-domain NIRS instrumentation described in Refs. [17,18]. It was based
on picosecond diode lasers (Sepia, Picoquant GmbH, Berlin, Germany), fast single-photon
detectors, and time-correlated single-photon counting (TCSPC) modules (SPC-134, Becker &
Hickl GmbH, Berlin, Germany). The measurements were part of a performance assessment of
time-domain optical brain imagers according to the "nEUROPt Protocol" [19] in which several
systems and configurations were compared. The dataset used in the present work as well as in Ref.
[20] corresponds to configuration "PTB 1" in Ref. [19]. It was acquired with a 797 nm laser head
and with a R7400U-02 photomultiplier tube (Hamamatsu Photonics, Japan). Data from the same
two-layer phantom experiment but recorded by another detector were analyzed in Ref. [12]. The
picosecond laser pulses were guided to the surface of the phantom by a multimode optical fiber
(core diameter 200 µm). At a distance of ρ = 30 mm diffusely scattered photons were collected
by a fiber bundle (diameter 4 mm, length 1.5 m, NA 0.54) connected to the PMT. The phantom
that is described in detail in Ref. [21] consisted of a container made of black polyvinyl chloride.
The front plate (thickness 2 mm) was equipped with two plexiglass windows (diameter 7 mm) for
the source fiber and the detector fiber bundle. A Mylar foil of 30 µm thickness was used as a
separator to realize the two-layer structure. The thickness of the first layer was l1 = 9mm, the
thickness of the second layer l2 = 61 mm. Both layer volumes in the container were filled with
liquid solutions made of water, Intralipid-20% to adjust the scattering coefficient, and black India

Fig. 2. Scheme of the experimental setup for measuring the optical properties and the
thickness of the two-layered phantom. The source-detector distance ρ was set to 30 mm.
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ink to adjust the absorption. The dependence of the (nominal) optical properties on the Intralipid
and India ink concentration was known with high accuracy from previous measurements within
a multicenter study [17]. The procedure of the preparation of the liquid was described in detail in
Ref. [20].
A total of 24 measurements with different absorption coefficients µa,1 and µa,2 of the two

layers was done, while the reduced scattering coefficients of both layers remained constant
(µ′0, s, 1 = µ

′
0, s, 2 = 1mm−1) throughout the study. In the first twelve measurements, the absorption

coefficient µa,1 of the first layer was increased almost linearly, with smaller steps in the range
of the smallest changes. In the second twelve measurements, µa,2 was stepwise increased after
µa,1 was set back to the start value of measurement 1. Figure 3 illustrates the nominal values of
the parameters of interest that are considered as unknown parameters in the following analysis.
The photon count rate was adjusted to 1 × 106s−1 in the homogeneous case (measurements # 1
and # 13), and the filter settings were not changed when adding absorption. The lowest count
rate in the series was 2 × 105s−1. The DTOFs were recorded with a collection time of 1 s,

Fig. 3. Nominal parameter values of the studied two-layered phantom.

Fig. 4. Normalized DTOFs for the homogeneous case (measurement # 1), the largest
absorption in layer 1 (measurement # 12), and the largest absorption in layer 2 (measurement
# 24), together with the measured IRF.



Research Article Vol. 11, No. 1 / 1 January 2020 / Biomedical Optics Express 255

with 100 repetitions in each measurement. After each measurement the instrumental response
function was recorded. Due to the small time gap to the measurement, long term drifts could be
excluded in this way. Figure 4 shows the DTOF for measurement # 1 (homogeneous case) after
summation over the 100 repetitions, together with the normalized IRF. Furthermore, the DTOFs
for measurement # 12 (largest absorption in layer 1) and measurement # 24 (largest absorption in
layer 2) are plotted for comparison. The DTOFs have been normalized to the maximum of DTOF
# 1. The IRF exhibits a small shoulder due to the shape of the laser pulse and its halfwidth is
approximately 500 ps.

3. The extended Kalman filter

The Extended Kalman Filter (EKF) [15,22] is a non-linear, non-optimal generalization of the
Kalman Filter which is suitable for problems where the forward model is non-linear. In our
specific application we will name x to the vector containing the optical properties µa and µ′s
(for the corresponding layer), the geometrical parameter l and t0 (an optional time shift to
account for an imperfect correction of the delay due to different fiber arrangements in IRF and
phantom measurements), and y to the measured DTOF. The subscript t will indicate the respective
measurement in the sequence described above, i.e. t = 1, . . . , 24. Considering an evolution
operator F, an observation operator H, the Extended Kalman Filter can be used to solve problems
written in the form

xt+1 = F(xt) + ηt, ηt ∼ N(0,Qt) (2)

yt+1 = H(xt+1) + νt, νt ∼ N(0,Rt) (3)

where the covariance matrices Qt and Rt stand for the process noise and the measurement noise,
respectively. This means that the uncertainty of the evolution of the variable xt follows a Normal
distribution with zero mean and covariance matrix Qt (denoted as N(0,Qt)), and the uncertainty
in the measurement follows a Normal distribution with mean 0 and covariance Rt. The variables
η and ν are realizations of those random variables. Assuming independence between F and η
and between H and ν, it can be seen that the residuals follow a Normal distribution as described
above. The EKF advances in time by updating information provided by two operators: the
evolution operator and the observation operator. The predicted distribution is constructed using
the information of the prior step and the evolution operator; then, the data is compared with the
measurement using the observation operator and the discrepancies are corrected. The result of
this procedure is the updated distribution, and it can be summarized in the following iterative
process: considering the initial distribution N(x0, Γ0), in step t + 1 the mean and covariance
xt+1, Γt+1 follow the upgrade equations

Prediction step:

xt+1 |t = F(xt)
(4)

Γt+1 |t = F′TΓt |tF′ + Qt (5)

Update step:

xt+1 |t+1 = argmin
x∈Rn
‖(yt − H(x))‖2Rt

+
(x − xt+1 |t)2Γt+1|t (6)

Kt = Γt+1 |tH′t
(
H′t Γt+1 |tH

′T
t + Rt)

)−1
(7)

Γt+1 |t+1 = (I − KtH′t )Γt+1 |t (8)

where H′ = ∂H
∂x (xt+1 |t) is the Jacobian matrix of the observation operator and Kt is the Kalman

gain matrix. The output of the EKF is the updated distribution after considering, at each step, the
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prediction according to our evolution proposal, and correction after seeing the measurement, i.e.
N(xt+1 |t+1, Γt+1 |t+1).

Although the output of the EKF is a distribution, we may be interested in particular point
estimates which may be useful to analyze particular cases, such as the mode, the median, the mean,
etc. In this work we will use the Maximum A Posteriori (MAP) estimate, which corresponds to
the mode of the resulting distribution after an appropriate reparametrization [15].

4. Model acceleration

Themodel presented in Section 2.1 requires the calculation of theG1 function formany frequencies
ω and for many Bessel zeros. In order to ensure stability and convergence of the model, it is
necessary to perform many calculations which can be superfluous. In order to accelerate the
calculations we propose two improvements which give substantial gain in computation time.

4.1. GPU implementation

As the method involves an inverse Fourier Transform and an inverse discrete Hankel Transform,
the computational cost is of O((sw)2 log(w)) where s and w are the number of Bessel zeroes
and frequencies, respectively. Although a vectorized implementation can be used, the amount
of operations can be huge. The impact of this can be observed in the inverse problem time,
i.e. on an Intel i7 3630QM processor with 16 GB RAM at 1600 MHz the evaluation time is
about 2.15 seconds. In an iteration of the EKF we may need some hundreds of evaluations per
iteration, leading to very large iteration times. The first proposal is to use a tailored GPU parallel
implementation. To this end, we applied a NVIDIA GeForce GT 760M graphics card. In Fig. 5
the ratio between CPU and GPU times is plotted, showing that we can get an up to 4x gain with
this GPU.

Fig. 5. Speed comparison between models implemented in CPU and GPU. The chosen
parameters were µa,1 = µa,2 = 0.01 mm−1, µ′s,1 = µ

′
s,2 = 1 mm−1 and l = 10 mm, using a

number of frequencies nω = 1024 and a number of Bessel zeros ns = 7000

4.2. Model reduction

The model defined in Section 2.1 is constructed in the frequency-domain and taken to the time-
domain through a Fourier transform. A possible reduction of the number of frequencies in the
model can be obtained by seeing how much information can be retrieved through deconvolution
processes. Given that the measurement is the convolution of the DTOF and the instrument
response function, it is necessary to extract the DTOF from the measurement in order to compare
the information provided by the DTOF with our models and this is done by deconvolution. As
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the measurement is noisy, as well as the IRF (because they are realizations of random variables),
we may encounter problems in such process. Here, we will show two types of deconvolution: a
plain deconvolution and a Tikhonov regularized deconvolution [23].
The plain deconvolution can be stated in a very natural form and is obtained by performing:

fplain = F −1
[
F (fmeasured)

F (g)

]
(9)

where g is the Instrument Response Function (IRF) and fmeasured is the collected data in time-
domain. This implementation is not reliable because both, fmeasured and g are contaminated
by noise and we cannot guarantee that the quotient F(fmeasured)

F(g) lies in the Schwarz space and,
thus, may not converge to a useful solution. Nevertheless, some useful information may still be
recovered in the frequency-domain at low frequencies before noise dominates, as Fig. 6 shows in
the highlighted region of interest.

Fig. 6. Normalized logarithm of the amplitude (both for the theory and the deconvolved
measurement number 1) vs. frequency. The region of interest (highlighted in red) shows the
required frequencies used for the DTOF reconstruction.

The Tikhonov regularized deconvolution [23] can be stated as:

fTikhonov = F −1
[
F ∗(g)F (fmeasured)

|F (g)|2 + λ

]
(10)

where ∗ stands for complex conjugation and λ is a tunable hyperparameter which, in this work,
was obtained through the L-curve criterion [24]. It can be shown that the Tikhonov regularized
deconvolution is well defined and can be used to reconstruct the underlying DTOF [25]. However,
our interest is the region where both approaches share the same kind of information when
comparing them with the corresponding model and we need to see the usable information in
frequency-domain, not in time-domain. This is also necessary because our model is constructed
in the frequency-domain and then transformed to the time-domain. In Fig. 6 we can see a region
which allows us to devise a reduced model. Instead of using the full information provided by
the model using all the frequencies in the Fourier space, we can use the information provided
by the model evaluated in a subset of the frequency-domain. Using that subset, we reduce the
computational effort of computing function G1 from O(sw) to O(s) once we have chosen an
appropriate amount of frequencies, which will be fixed (the total cost for computing the reduced
model is O(s2 log(s)) which can be dramatically lower than the full model). For the rest of the
frequencies, we set G1(sn, z, ω) = 0.

In Fig. 7 a comparison of the full model (where we calculate G1(sn, z, ω) without truncating)
with the reduced model is shown (both after convolution with the same IRF). In log-scale there is
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a good agreement except at very early and very late times. However, this disagreement will be
treated in the next Section as we will not consider those regions where there is a large relative
error.

Fig. 7. Comparison between full and reduced model after convolution with the IRF. The
chosen parameters are the same as in Fig. 5.

The EKF uses an observation operator which is not the model compared directly against the
measurements, but its convolution with the IRF instead, i.e. H(x) = g ∗ R(x) . Such convolution
must be compared using both, full and reduced model, to see how much information is lost.
In order to quantify the information gain of using the full vs. the reduced model, we use the
Kullback-Leibler divergence [26], which measures how much information is lost when we replace
the full model with the reduced one.
According to this test, the obtained value of the divergence is 5.4852×10−4, which is the

same information lost as in the case of a standard Gaussian distribution, considered as the full
model, replaced by a Gaussian distribution of zero mean and standard deviation of 0.9770, which
suggests that the information lost is negligible. The Kullback-Leibler divergence is also used
as a measure of discrepancy between probability distributions, so this interpretation is also
appropriate because the DTOFs can be regarded as probability distributions.
Figure 8 shows the speed gain between the full model implemented in GPU and the reduced

model. The total speed improvement is almost 60 times.

Fig. 8. Speed gain ratio between the reduced model and the full model, both implemented
in GPU. The total speed gain is around 60 times the original model (in its CPU version).
The parameters were set as µa,1,2 = 0.01 mm−1, µs,1,2 = 1 mm−1, l = 10 mm. For the full
model, nω = 1024 and ns = 7000. For the reduced model, nω = 20 and ns = 7000.
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5. Implementation of the EKF

The implementation of the EKF is straightforward once the inputs are specified. However, the
main assumption of the method is the normality of the measurement error, i.e., if the measurement
y obtained from a sample with optical properties µa, j, µ′s, j and layer thickness lj, given an
appropriate model H evaluated in the same properties, we have:

y ∼ N(H(µa, j, µ′s, j),R) (11)

y − H(µa, j, µ′s, j) ∼ N(0,R) (12)

D−1(y − H(µa, j, µ′s, j)) ∼ N(0, I) (13)

Which means that the samples, after appropriate scaling, are independent and identically
distributed samples of a standard normal distribution (D is the matrix obtained after Cholesky
factorization [27] of R, i.e. DDT = R). This allows to develop a routine that can verify
normality of the data. First, the covariance matrix R must be provided (this should be the same
covariance matrix that will be provided to the EKF, Γt) and its Cholesky factorization, D, must
be calculated. Second, using the model and the corresponding optical properties, calculate
z = D−1(y − H(µa, j, µ′s, j)). Finally, perform a hypothesis test on the normality of the resulting
sample to decide whether the method is applicable or not. Also, considering Poisson statistics, it
is possible to apply the same reasoning as above by considering the following transformation
when the expected value of counts is large [28]:

X ∼ Poisson(λ) (14)

(X − λ)
√
λ
∼ N(0, 1) (15)

(y − H(µa, j, µ′s, j))
√y

∼ N(0, 1) (16)

and the procedure described above holds for R a diagonal matrix with the square root of the
measurement. As our model is based on the diffusion approximation, care must be taken when

Fig. 9. Full histogram of weighted residuals which does not fulfill normality conditions.
The measurement chosen is the first, which corresponds to µa,1 = 0.01 mm−1, µa,2 = 0.01,
µ′s = 1, all units in mm−1. Lower subplot shows the weighted residual plot for each
time-channel suggesting the region where the measurement fails the Kolmogorov-Smirnov
test.
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applying the method described above, especially for early times, where the assumed diffusive
regime fails [1,29]. An example of this situation can be seen in Fig. 9 where, within the first
nanosecond, the residuals are not in the range [−3, 3] where the samples should lie with 99%
probability, suggesting that our discrepancy is not only caused by noise but also because of the
model which is not appropriate in that region and we get a histogram with way too heavy tails to
follow a Gaussian distribution. The proposal here is similar to previous works [30]; the DTOFs
and the model (reduced or not) are cropped and the region of interest selected follows a Gaussian
distribution. In Fig. 10 the DTOF is cropped between 1 and 5 ns, where the resulting residuals
histogram follows a Gaussian distribution as expected. In this particular case the employed test
was the Kolmogorov-Smirnov [28] test, which uses the empirical cumulative distribution to infer
whether the sample comes from another proposed distribution, in our case, a standard Normal
one. After cropping the resulting data, the test fails to reject the normality hypothesis, allowing
us to apply the EKF over this data.

Fig. 10. The cropped DTOF satisfies conditions. Lower subplot shows the weighted
residual plot for each time channel. The shape of the histogram resembles a Normal
distribution. When the data is scaled we get a standard normal distribution according to the
Kolmogorov-Smirnov test with p-value 0.81.

6. Results

In this Section we discuss the results of two particular situations using the data acquired as
explained in Section 2.2. First, we retrieve the parameters of interest µa,1 and µa,2 considering
the rest of the parameters fixed (namely µ′s,1, µ

′
s,2, l and t0). The second retrieval is by allowing

the entire set of parameters to vary.
The data was pre-processed in the way explained in the previous Section starting by the leftmost

5% percent of the maximum of the DTOF and ending in the rightmost 0.5% of the maximum
of the DTOF, where we ensure to have a Gaussian distribution of the statistical uncertainty. In
this way, we can get information from the lower layer by collecting late photons. As explained
above, after we ensure that we can apply the EKF, we must provide the initial distributions in
order to apply it. For the parameter distributions of µa, j, µ′s, j and l, we use the same change of
variables as in [15], but not for t0 which we assume that follows a Gaussian distribution, as it can
be either positive or negative. We assume that the parameters are independent a priori and, using
a 3σ-confidence interval around the mean we obtain the values in Table 1.

In Fig. 11 the MAP for each absorption coefficient is shown, together with their corresponding
limits of the 99% credibility intervals, where the behavior is consistent with the nominal values as
well as the reported results in prior works [12,20], which make use of the same experimental data.
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Table 1. Parameter setup for situations 1 and 2. M1 and M2 stand for the initial values of the
corresponding parameters. Analogously, CI stands for the 3σ-confidence interval. The fourth and

seventh column (Fixed?) indicate whether the corresponding parameter is fixed for situation 1 or 2,
respectively.

Parameter M1 CI 1 Fixed 1? M2 CI 2 Fixed 2?

µa,j 0.015 [0.0058, 0.0387] NO 0.015 [0.0058, 0.0387] NO

µ′s,j 1 1 YES 1.1 [0.5624, 2.1514] NO

l 9 9 YES 11 [5.6242 21.5143] NO

t0 0 0 YES 0.006 [−0.0071 0.1271] NO

It is possible to see that these intervals are very narrow, giving high confidence to the recovery.
In particular, the interval for µa,2 is narrower than the interval for µa,1; the reason for this might
rely in the fact that the DTOFs were cropped at rather late times only, gathering in this way a
large fraction of information from late photons which should have travelled mostly through the
second layer. As the method evolves through the iterations, we make use of information of past
measurements which can lead to higher uncertainty as can be seen in Fig. 11. This phenomenon
is well-known and can be reduced using memory-fading variants [31].

Fig. 11. Recovery of the absorption coefficient of the first and second layers (left and right
plots, respectively) when fixing the rest of the parameters. The blue dots represent the
retrieved values, together with the uncertainty intervals (red lines). The nominal values,
indicated by the green line, are shown for comparison.

Figure 12 presents the recovery results for all six parameters. Note that in this case the retrieved
values of µa,1 and µa,2 show qualitatively the same behaviour as those obtained when fixing the
other parameters, i.e., the algorithm correctly predicts the expected changes in both absorption
coefficients throughout all the measurements (except, for example, in measurement 21); however,
the credibility intervals are wider, being this effect particularly evident for µa,1. We can also
observe that µ′s,1 remains almost unaltered along the measurements, as expected, although the
interval for µ′s,2 is wider than the interval for µ′s,1. The reason for this behavior is that large
variations in the scattering of the second layer do not change dramatically the shape of the DTOFs
[16], resulting in high uncertainties for this particular parameter. The uncertainty increases also
because of the correlation between the effects produced by different parameters and their impact
in the model, i.e. each parameter does not have a unique effect in the shape of the DTOF (masked
also because of the IRF) and this increases the plausibility region.
Although the only parameters that evolve in the experiment are µa,1 and µa,2 and the rest

are constant, the latter must also be estimated. We expect the parameters to converge to the
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Fig. 12. Recovery of all the parameters. The blue dots represent the MAP estimate obtained
by our methodology, the green lines represent the nominal values. The red lines corresponds
to the 99% credibility intervals. It is important to note that our estimations are in good
agreement with the nominal values and these lie within the credibility intervals.

corresponding constant and then stay there. That behavior can be seen in all the constant
parameters, showing the robustness of our method. The thickness of the first layer, which starts
at 11 mm, takes some more iterations to reach a value closer to the nominal one of 9 mm. This is
a reasonable behaviour, considering that the corresponding variance was set rather low, implying
good a priori knowledge and, consequently, high difficulty in presenting large changes through
iterations. Finally, the retrieved value for t0, which was initially considered to be 0.006 ns,
instantly increases up to almost 0.025 ns which is about two or three channels in our experimental
resolution, and remains stable for the rest of the measurements.

Figure 13 shows the marginalized distribution for each parameter, as opposed to Fig. 12, where
we present point estimates. As explained in Ref. [15], the result of the EKF is a multivariate
distribution which can be too complex to analyze, in order to study each parameter separately,
is is possible to marginalize every parameter by integrating the distribution with respect to
all the parameters but the one of interest. This gives us information of the uncertain of the
parameter of interest after considering all the possible values of the other ones (according to our

Fig. 13. Marginal a posteriori distributions for the optical, geometrical and temporal
parameters. The more the intensity of the yellow, the higher the density of the corresponding
parameter. These plots show the resulting distributions shown in Fig. 12.
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full distribution). In this case an asymmetry of the rescaled parameters can be observed, which is
the result of using log-normal distributions. Since we are dealing with distributions, it can also
be seen that values closer to the MAP present higher probability of being correct than those far
away from it, even when lying inside the 99% credibility interval.

In Fig. 14 we can see the good agreement between the recovery and the collected data for the
particular case of measurement 2 and the Reduced-χ2 estimate between the recovery and the
measurement, which shows a good agreement. The window used is shown in the lower plot
of Fig. 15 which is the result of the analysis performed previously in Section 5. The resulting
time window is [1.1238, 3.9822] ns and it was used for all measurements. It is important to
note that the change in frequency actually changes the temporal resolution; by interpolation it is
possible to perform the required calculation within the chosen interval. Figure 15 summarizes
the reduced χ2 estimate for the analysis of all measurements. Although we are minimizing two
terms (measurement and evolution) together, the EKF is capable of obtaining a good estimate
according to the error variance.

Fig. 14. Fit comparison plot to show the goodness of fit for measurement 2. The upper
plot shows the comparison between the reconstructed DTOF (blue line) vs the measured
one (red line). In the lower graph, the residuals are plotted. The used temporal window is
[1.1238, 3.9822] ns.

Fig. 15. Reduced χ2 square plot to show the goodness of fit for all measurements. As the
values are near 1, the method succeeds in capturing the noise structure while preserving the
evolution proposed.
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7. Discussion and conclusions

In this work we present an implementation of the Extended Kalman Filter for determining
the optical parameters as well as the thicknesses of layered media through single-distance,
time-resolved reflectance measurements. This implementation incorporates several different
improvements with respect to the algorithm introduced by some of the authors in a previous
publication [15], by simplifying the data acquisition using just a single pair of light source
and detector and avoiding a calibration procedure. It is also implemented in the time-domain,
leaving aside the need of further data processing to take it to the frequency-domain. The present
algorithm was validated with measurements on a two-layered liquid phantom, which have already
been used in previous works [20], suggesting that this method could be enhanced in order to
implement it in true dynamic situations. The algorithm is a probabilistic approach whose output
returns a distribution fully characterized by its mean and covariance, and it can be analyzed using
statistics tools.

We have introduced two possible approaches for the acceleration of the forward model. They
are useful to reduce the recovery time which is directly related to the forward model computation
times. The GPU approach led to a 4x improvement, but a better implementation can obtain a
higher reduction. This is also technology-dependent which means that a better GPU may also
obtain better times. The second approach is a model reduction which loses some numerical
precision in order to gain speed. We have shown that, for the studied cases, this loss in negligible.
The gain in this case was about 15x against our GPU implementation, which means a total gain
of 60x compared to a full CPU implementation. A proper numerical analysis of the loss can be
performed so the error can be bounded.
We have also performed an analysis of the DTOF that justifies its crop, needed by the EKF.

As the measurements are described by Poisson statistics, if we take many measurements, we
can apply the Central Limit Theorem [28] to describe the noise statistics of the mean through
a Normal Distribution. However, there are some troubles in the tails of the error distribution,
especially if we use a reduced model because the main loss is in that region, making the crop
necessary. This was tested using the Kolmogorov-Smirnov test that failed to reject our hypotheses.
In Ref. [15], a calibration procedure was implemented to make measurements and theory

each other compatible. In this work, we have shown that this calibration procedure was not
necessary, reducing some uncertainties introduced by it; namely, the regularized deconvolution is
unnecessary, leading to a simpler and faster method but also less prone to errors, in the region
of interest where we have worked. This method can be applied to the multi-distance approach,
as well as the analysis performed in Section 5, to enhance the recovery of parameters, i.e. the
true values lies within our a posteriori credibility intervals, and those were to be narrow. Since
the advantage of the multi-distance approach is the availability of perspectives through different
layers, as the distances are related to the light penetration in the media, the combination of
approaches of this work and [15] might result in a better performance, in terms of speed and
certainty.

Despite that the set of measurements was not meant to be used for a dynamic setup, it could be
used artificially to that purpose. The objective of using the extended Kalman Filter instead of
performing a recovery from each measurement separately was to incorporate information from
past measurements, given that they are not "far" from each other, since separated recoveries
would mean start over and waste information recently acquired. It could be argued that the use of
a recent recovery and used as an initial point of a subsequent iteration, would be analogous to the
proposed approach, but this would neglect the information provided by the updated covariance
matrix Γt+1 |t+1. This is the idea of using prior information, to use something obtained before
(or even assumed) in the retrieval of information in a further step. The extended Kalman Filter
works for Normal distributions, but other approaches are available when this is not true, i.e. the
Unscented Kalman Filter, the Particle Filter, the Gaussian Sum, etc. [31].
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In a future work we propose to establish a comparison in the performance of this new
implementation of the EKF between the time-domain and the frequency-domain approaches.

Funding

Comisión de Investigaciones Científicas (FCCIC 2016).

Acknowledgements

The authors would like to thank the valuable contribution of Dr. Thomas Gladitz and Mr. Lin
Yang on discussing how to improve the method and deal with time-domain data.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive

measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
2. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. van der Zee, and D. Delpy, “A monte carlo

investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys.
Med. Biol. 38(12), 1859–1876 (1993).

3. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on
diffusion approximation. i. theory,” Appl. Opt. 36(19), 4587–4599 (1997).

4. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,”
Appl. Opt. 44(10), 1942–1947 (2005).

5. B. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Diffuse optics
in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast
Cancer Res. 7(6), 279–285 (2005).

6. D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo
time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46(10), 1717–1725 (2007).

7. D. Contini, A. Torricelli, A. Pifferi, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional
near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).

8. E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5),
051402 (2007).

9. P. Jones, H. Shin, D. Boas, B. Hyman, M. Moskowitz, C. Ayata, and A. Dunn, “Simultaneous multiespectral
reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral
ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).

10. C. Sato, M. Shimada, Y. Tanikawa, and Y. Hoshi, “Estimating the absorption coefficient of the bottom layer in
four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance,” J. Biomed.
Opt. 18(9), 097005 (2013).

11. Y.-K. Liao and S.-H. Tseng, “Reliable recovery of the optical properties of multi-layer turbid media by iteratively
using a layered diffusion model at multiple source-detector separations,” Biomed. Opt. Express 5(3), 975–989 (2014).

12. F. Martelli, S. D. Bianco, L. Spinelli, S. Cavalieri, P. D. Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz,
“Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved
single-distance measurements,” J. Biomed. Opt. 20(11), 115001 (2015).

13. R. Re, D. Contini, L. Zucchelli, A. Torricelli, and L. Spinelli, “Effect of a thin superficial layer on the estimate of
hemodynamic changes in a two-layer medium by time domain nirs,” Biomed. Opt. Express 7(2), 264–278 (2016).

14. D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. S. Lawrence, “Subtraction-based approach for
enhancing the depth sensitivity of time-resolved nirs,” Biomed. Opt. Express 7(11), 4514–4526 (2016).

15. H. García, G. Baez, and J. Pomarico, “Simultaneous retrieval of optical and geometrical parameters of multilayered
turbid media via state-estimation algorithms,” Biomed. Opt. Express 9(8), 3953–3973 (2018).

16. H. García, D. Iriarte, J. Pomarico, D. Grosenick, and R. Macdonald, “Retrieval of the optical properties of a
semiinfinite compartment in a layered scattering medium by single-distance, time-resolved diffuse reflectance
measurements,” J. Quant. Spectrosc. Radiat. Transfer 189, 66–74 (2017).

17. H. Wabnitz, M. Möller, A. Liebert, A. Walter, R. Macdonald, H. Obrig, J. Steinbrink, R. Erdmann, and O. Raitza, “A
time-domain nir brain imager applied in functional stimulation experiments,” in Photon Migration and Diffuse-Light
Imaging II, (Optical Society of America, 2005), p. WA5.

18. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared
spectroscopy and imaging of the adult human brain,” in Oxygen Transport to Tissue XXXI, E. Takahashi and D. F.
Bruley, eds. (Springer US, Boston, MA, 2010), pp. 143–148.

https://doi.org/10.1364/AO.28.002331
https://doi.org/10.1088/0031-9155/38/12/011
https://doi.org/10.1088/0031-9155/38/12/011
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/AO.44.001942
https://doi.org/10.1186/bcr1358
https://doi.org/10.1186/bcr1358
https://doi.org/10.1364/AO.46.001717
https://doi.org/10.1364/OE.14.005418
https://doi.org/10.1117/1.2789693
https://doi.org/10.1117/1.2950312
https://doi.org/10.1117/1.JBO.18.9.097005
https://doi.org/10.1117/1.JBO.18.9.097005
https://doi.org/10.1364/BOE.5.000975
https://doi.org/10.1117/1.JBO.20.11.115001
https://doi.org/10.1364/BOE.7.000264
https://doi.org/10.1364/BOE.7.004514
https://doi.org/10.1364/BOE.9.003953
https://doi.org/10.1016/j.jqsrt.2016.11.018


Research Article Vol. 11, No. 1 / 1 January 2020 / Biomedical Optics Express 266

19. H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zołek, M. Kacprzak, P. Sawosz,
R. Maniewski, A. Liebert, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi,
“Performance assessment of time-domain optical brain imagers, part 2: neuropt protocol,” J. Biomed. Opt. 19(8),
086012 (2014).

20. A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation fo superficial and cerebral
hemodynamics using a single-distance time-domain nirs measurement,” Biomed. Opt. Express 5(5), 1465–1482
(2014).

21. F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka,
R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects,
part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).

22. G. R. Baez, J. A. Pomarico, and G. E. Elicabe, “An improved extended kalman filter for diffuse optical tomography,”
Biomed. Phys. Eng. Express 3(1), 015013 (2017).

23. R. A. Willoughby, “Solutions of ill-posed problems (A. N. Tikhonov and V. Y. Arsenin),” SIAM Rev. 21(2), 266–267
(1979).

24. P. Hansen and D. O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci.
Comput. 14(6), 1487–1503 (1993).

25. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol. 160 (Springer Science and Business
Media, 2006).

26. J. M. Bernardo and A. F. M. Smith, Bayesian Theory (John Wiley & Sons, 1994).
27. G. H. Golub and C. F. van Loan, Matrix Computations (JHU Press, 2013), 4th ed.
28. V. Rohatgi, Statistical Inference, Dover Books on Mathematics (Dover Publications, 2003).
29. F. Martelli, D. Contini, A. Tadeucci, and G. Zacantti, “Photon migration through a turbid slab described by a model

based on diffusion approximation. ii. comparison with monte carlo results,” Appl. Opt. 36(19), 4600–4612 (1997).
30. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties

of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792
(2003).

31. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (John Wiley and Sons, 2006).

https://doi.org/10.1117/1.JBO.19.8.086012
https://doi.org/10.1364/BOE.5.001465
https://doi.org/10.1117/1.JBO.19.7.076011
https://doi.org/10.1088/2057-1976/3/1/015013
https://doi.org/10.1137/1021044
https://doi.org/10.1137/0914086
https://doi.org/10.1137/0914086
https://doi.org/10.1364/AO.36.004600
https://doi.org/10.1364/AO.42.005785

